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Electromagnetism in anisotropic chiral media
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We present here for homogeneous anisotropic chiral media an electromagnetic formalism manifestly
covariant under the complex rotation group O(3,C). The constitutive relations, the electromagnetic field
equations, and the boundary conditions are discussed. To display the main features of this formalism,
we discuss the propagation of plane waves in a medium that is anisotropic and chiral but simple enough

to make calculations tractable.

PACS number(s): 03.50.De

I. INTRODUCTION

Previous works [1,2] on chiral electromagnetism are
generalized here to anisotropic media. We use tensor no-
tation with the metric tensor

800=1, gij:—siﬁ gaB:gaB’ (1)

where §,; is the Kronecker symbol. The greek indices
take the values 0,1,2,3 and the latin indices the values
1,2,3. We also use the summation convention on repeat-
ed indices.

Let F 5 and G,z be the two antisymmetric electromag-

netic field tensors that are written, in tensor form,

0 E, E, E,

y
0O —B, B,
Faﬁ: 0 _Bx >
0
(2)
oD, D, D,
0 —H, H,
Gaﬁ = 0 _Hx »
0

where E, H, B, D are, respectively, the electric and mag-
netic fields, the magnetic induction, and the electric dis-
placement. Let #° be the dual tensor

Fob=1gP1°F ; 3)

where 7% is the permutation tensor equal to +1 (—1)
for any even (odd) permutation and zero if any of two in-
dices are equal. Then, from (2) and (3) we get

0 —B, —B, —B,
0 E, —E,
Fob= o E (@)
X
0

From now on, we use E,, E,, E;, and E; for E,E,E,,
and similarly for B,D,H. Then, the covariant form of
Maxwell’s equations is [3]

3,G%%=0, 9,7%¥=0, (5)

where 1, is the partial derivative operator with respect to
X -
Equations (5) are covariant under the full Lorentz
group L including time and space inversions. So they are
not suitable for chiral media that are not invariant under
space inversions. Consequently, since relativity requires
covariance only under the connected component L, of
the Lorentz group [4], one has to look for an elec-
tromagnetism covariant under L, but not under L. As
previously discussed [1,2] there exist two groups iso-
morphic to Ly: on one hand, the three-dimensional (3D)
complex rotation group O(3,C) and, on the other hand,
the group SL(2,C) of the 2X2 unimodular matrices. We
use here O(3,C) and it has been known for a long time [5]
that for an homogeneous isotropic achiral medium, the
formalism covariant under O(3,C) uses the complex vec-
tor

A;=iVeE,+VuH;, i=V—1, (6)
where € and p are, respectively, the permittivity and the
permeability of the medium. One must notice that the
presence of the imaginary unit i/ is not a matter of con-
venience; it appears because under space inversions E is a
polar vector and H an axial vector. Consequently, under
a space inversion A; transforms into its complex conju-
gate A7. Previously [1] we generalized (6) to homogene-
ous isotropic chiral media, and here we discuss its exten-
sion to anisotropic media.

II. THREE-DIMENSIONAL COMPLEX FORMALISM

A. Constitutive relations

One first has to define G 4 in terms of F 5 by using the
constitutive relations of the medium. These relations
come from outside the theory and in some sense they are
arbitrary, except that they have to satisfy the relativistic
covariance. This means that in a general linear medium
the relation between G5 and F 5 takes the form

GP=1yPrF ;| (7
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where Y*"? is a complex rank-four tensor which has been
thoroughly discussed by Post [6]. This tensor satisfies the
relations

Xaﬂrﬁ = XBUY5, XaBVG = XaBGV’ Xaliws: Xyéaﬁ . (8)

Here we assume y®?"? real and in matrix form one has [6]

afy -
X —E; @"B,
(9)
X0k75 Dk _Ekj Vkp
leyﬁ Elman Yin Xnp

In the matrix (9) €™ is the 3D permutation tensor. The
diagonal matrices represent the permittivity €, and the
inverse of the permeability x;,. The matrix v and its
transposed y,; represent the Fresnel-Fizeau effect [6].
One must note that v, and j,; are 3D pseudotensors
that are not invariant under space inversions since they
connect a polar vector with an axial vector. To avoid
confusion with permittivity €, one notes € the permuta-
tion tensors.

B. Electromagnetic field equations

To obtain from (5) and (7) a formalism covariant under
0O(3,C) we introduce the complex antisymmetric tensor
generalizing (6)

MP=gB+iG# (10)
that is, according to (3) and (7)
MB=L(FrP iy PrO)F 5 an

Then the Maxwell equations (5) become &,M **=0, that
is,

MY+ 9 M =0, (12a)
0]-Mj°=0 . (12b)
These last equations are not independent: (12b) is a

consequence of (12a)since M ki is antisymmetric. Now let
P/ and Q; be the two complex vectors

Pi=MY% MF=Q, . (13)
Then Egs. (12) become

I P —ie*9,0,=0,

3,P/=0,

(14a)
(14b)

which are the electromagnetic field equations in the 3D
complex formalism. Using (9), (11), and (13) we get for
the components of P and Q the following expressions:

Pi=MY= L gim Fin
L
2
=Bi+i(¢'E,+v/B)) , (15)

+ (XOjOIFOI +X0jIOFIO+X0jkIFkl ) ,

that is

P/=BI/+iDJ . (15"
In the same way
l‘é—‘kjlglszj_w%é_-ijOFlo_’_é_(ijlmFlm + Y MO,

+ij()lF01 ) ,

I

__=kjl - —kjn_Imr= —
E€VE,;+i(e7 e,,,,p)(,,qB”-i-ekij,mEl),

:Ekjl[*E1+i(X1po+yp1Ep)] ’

leading to

Q=X B?+y,EP+iE, (16)
or

Q,=H,+iE, . (16"

Under space reflections the vectors P and Q transform
into their complex conjugate.

In the 3D complex formalism there is no need to make
a distinction between covariant and contravariant vec-
tors, so that when indices are needed we only use the
lower ones. We also write

P=B+/D=vB+iD=vB+icE,

Q=H+iE=yB+iv'E , 1
with

v=I+iy . (17)

I is the 3 X 3 identity matrix and v the Hermitian conju-
gate of v. Using the nabla symbol V we write the elec-
tromagnetic field equations

VXQ=—id,P, (18a)
V-P=0. (18b)

Now let I=A+iX be a complex Hertz vector. Then
the solutions of (18) is

P=iVXII, Q=3I . (19)

Substituting (17) into (19) gives, for the components A
and = of I1, the system of equations '

B=—VXZ, E=3,2, (20)
and

YB+eE=VXA,

YB—yTE=3,A . =
Taking into account (20) the relations (21) become

€3, 2—yVXZEZ=VXA,

XVXZE+yTo,2=—3A . (22)

Then, eliminating A gives the equation satisfied by =,
VX(YVXZ)+eRE—yVXIZ+VX(yT8,2)=0,
(23)
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which may be considered as a generalized wave equation.
Finally substituting (20) into (17) we get as expressions
for P and Q

P=—vWXZ+ied,T ,

24)
=—xVXZ+ivi9,3 .

These relations supply the solution of the electromagnetic
field equations (18) in terms of a solution of the general-
ized wave equation (23).

C. Boundary conditions

To be complete one has still to discuss the boundary
conditions on a surface of discontinuity S inside an
homogeneous anisotropic chiral medium. Let n be the
normal to S. Applying the divergence theorem to (18b)
and the Stokes theorem to (18a) gives the integral rela-
tions

frnjda=0 ,

chdej =—i fr'ﬂonnjaa .

In (25a) T is a surface enclosing a finite volume contain-
ing S. In (25b) C is a closed contour around S, and I'’ is
an open surface spanning the contour, da is the elementa-
ry area, and dl ; is a line element on the contour.

Then, making = and C tend to zero judiciously [3] sup-

plies the boundary conditions on S

(25a)

(25b)
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The primed and unprimed quantities correspond to the
electromagnetic fields on both sides of S. Using (17) one
sees at once that the relations (26) supply the usual
boundary conditions.

Summing up the relations (19), (23), (24), and (26) pro-
vides the tools for solving the problem of electromagnetic
waves propagating in a homogeneous anisotropic chiral
medium. In the next section we apply these relations to
the case of plane waves.

III. PLANE WAVES
IN HOMOGENEOUS ANISOTROPIC CHIRAL MEDIA

A. Dispersion relation

For a plane wave with all components of the two vec-

tor fields P and Q proportional to e'(ijj+k°x°),x0=ct,
Egs. (18) become
ikyP+kXP=0, k-P=0, (27)

so that all the results of Sec. II hold valid if one changes
¥, and V respectively, into k, and k. In particular one
has

P=—vkX3+iekyZ, Q=—xkXZ+ivik,X, (28)

and A is a solution of the algebraic system of equations

kX(xkXZ)+ekdZ—y(kXkoZ)+kX(yTky=)=0 .
(29)

n;(P;—P;)=0, (26a)  This system supplies two components of A in terms of the
third one when it has a solution, that is, when the deter-
Euni(Q—Q[)=0. (26b)  minant of its coefficients is zero. This last condition is
J
G(kO’k )= “Eijkglmnkjkakl +Eijkk0kjyln _—éjmnkokmyij +k(%efn “ =0 > (30)

where || 4 || denotes det 4.

The dispersion relation G(ky,k)=0 generally has
many solutions corresponding to the different modes able
to propagate in the medium. But let us remark that the
relation (30) is homogeneous in k, and k, that is,

G (pko,pk)=0 31

for arbitrary p. Hence differentiating with respect to p
and setting p=1 we have

koGo+k,G;=0, (32)

where G, and G; are the derivatives of G with respect to

ko and k;, respectively. Consequently, the velocity of the
plane waves is
Ci(k)=—G;/G, (33)
and we may define a refractive index by the relation
n=G,/(G}+G3+G3)"?. (34)

Substituting the solutions of the dispersion relation (30)
into (34) gives the index of refraction corresponding to

the different modes propagating in the medium. Of
course n depends upon the parameters characterizing the
constitutive relations, but in the case of dispersive waves
n depends also on k.

From (32) and (34) we get

k;=—nkoG,;/(G}+G}+G})'?, (35)

leading to k jkj=k(2,n 2. This last relation proves that for
nondispersive waves, the Fourier transform may be used
rightfully.

The general dispersion relation (30) is difficult to solve.
That is why in the next section we consider a particular
anisotropic chiral medium making calculations feasible.

B. Crystal-like medium

We consider a medium in which the matrices Y, €,y are
diagonal. Explicitly
Xij =8, vi=ad;, €;=rd

g 1i>0. (36)

8,; is the Kronecker symbol, c is a real arbitrary parame-
ter, and r; is positive. Substituting (36) into the disper-
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sion relation (30) we get

G ko, k)=|kgr,8;+k;k;—k?8,]=0, (37)

)

which is similar to the dispersion relation obtained for
wave propagation in a crystal [7] when the structure of
the crystal produces directional effects in the dielectric
properties. Explicitly (37) writes

G(ko,k)=k§riryrs—kilrors(k3+k3)
+ryr(k3+k?)
+ryry(ki4+k2))

+k3kXr k3 +rk3+rk3)=0. (38)

We further assume, as in our previous works [1,2], that
one has a two-dimensional problem in which the elec-
tromagnetic field does not depend upon y. This implies
k,=0 and (38) reduces to
Glkg,k)=kbrirars—ki(rirkd+ryrskd +ryrk?)

+ k3 r k3 +rik3)=0, (39)
with k2=k2+k3. Leaving aside k§=0, the solutions of
(39) are

k3= 2o [ryro k2 +ryrskd+ryrk?
+(ryrk} +ryrski—ryr k)],
that is,
k§=(ki+k3)/ry, (40a)
ki=(riki+rsk3)/ryry, (40b)

so that two modes can propagate in this crystal-like
medium.

Let us now consider the corresponding indices of re-
fraction. One has

G0=2k0[2k(2)r1r2r3—rz(rlk%+r3k§ )——r3rlk2] R
G, =2k, r\[k2—k}(ry+ry)+2k (rik}+r;k3)], @41

Gy=2kyri[k*—kj(r, +r2)+2k3(r1kj2+r3k§ )] .

To obtain these results (39) has been divided by k.
Without any calculation one sees at once that the refrac-
tive index for the mode (40a) is n =(r,)!/%. Let us prove
this result with (34). Substituting (40a) into (41) gives

G0=2k0r2(k%r1r3*rlk%—r3k§) ,

G,=—2k kdrry+2k (rik3+r;k3), (42)

Gy =—2k3k3r ry+2ky(rik3+rik3),
so that

G +G2=4k2r,(k3rirs—riki—r;k3) . (42"

Substituting (42) and (42’) into (34) gives n=r}’%. For
the mode (40b) the expressions (41) become

60:2k0r1r3(k%r2—k2),
G, =2kr(k?—kjr,) , (43)
Gy=2k;ry(k*—kjr,) ,

and
G +G2=4(k>—kir))Mk3r2 +kir?) . (43")
Substituting (43) and (43’) into (34) gives
n=k0r1r3(k%r1+k§r3)_l/2, (44)

which is characteristic of a dispersive wave. Using a ter-
minology borrowed from crystal optics [7] we may call
ordinary and extraordinary waves the electromagnetic
fields corresponding to the modes (40a) and (40b), respec-
tively.

C. Plane waves in a crystal-like medium

Using the solutions of the dispersion relation one can
now look at the form of the electromagnetic plane waves.
With the matrices (36), the Eq. (29) for the imaginary
part of the Hertz potential becomes

(k3r;—k»8,3; +kk;2;=0, (45)

and still assuming a two-dimensional problem with k£, =0
we get from (45)

(k3ry—k3)=,+k k32;=0,
(k3r,—k?—k3)=,=0, (46)
kyk, 2+ (k3ry;—k})=,-0,

while the expressions (28) for the electromagnetic field
vectors P and Q are

Qd :inOSjmzm _Ejlm klzm ’

47)

with
B=1+ia . 47

For the ordinary wave the dispersion relation (40a) im-
plies that the solution of (46) if £,=2,=0 and X, arbi-
trary so that according to (47) the components of P and

Q are

P;=—iBk;y2,, P,=kor %, P;=ifk,Z,,
Q1=—k;3; @, =iBko2; Q3=k,2; .

(48)

For the extraordinary wave the solution of (46) is, accord-
ing to (40b)
3,20, S;=—1 (k3 —k2)3, . (49)
kik;

Substituting (49) into (47) gives
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kb
P, =kyr 2, P2=1[3k—r121 ,
"3

— o K=k

) k3
0,=iBkoZ, Q2=7c“’121 >
3

k
0,= —ib’r;;(k%rl —k3)3, .
The relations (48) and (50) where =, and =, are some ar-
bitrary constants give the form of the ordinary and ex-
traordinary electromagnetic plane waves in a crystal-like
medium. Then one may generate wave packets if one as-
sumes that =, and 2, are functions of k, and k,

?j(x’xo): fei(koxo+kj J)Pj(k,ko)

X8G(k, ko)dk dk, ,
Q) (x,x0)= fei(k0x0+hjxj)Qj(k,kO)

X 8G(k, ko)dk dk, .

(51)

In these integral relations one uses for P; and Q; either
(48) or (50). The Dirac distribution 8G in (51) means that
the integration is not carried out in all the four-
dimensional space but only inside the volume bounded by
the surface G(kg,k)=0.

D. Reflection and refraction of plane waves
in a crystal-like medium

Let us now assume that the plane z=0 is a surface of
discontinuity S between two crystal-like media. We first
discuss the reflection and the refraction on S of an ordi-
nary plane wave incident from z <0. According to (40a)
we define k, and k; by the relations

k,=kory/?sinf, ky=kyr’? cos , (52)

J

Aeiko[\/r_3 sin(0,)x +1/r| cos(6,)z]

2= 1Re
Te ko[ Y/ 7% sin(6,)x+1/7] cos(6,)z]

(incident wave)

iko[\/ 7 sin(@ )x +1/7; cos(6 )3]
olV/ry sin(6, x4/ "7 (reflected wave)

The kinematic conditions for reflection and refraction are
the same as (54) with 7, instead of r,, while using (50),
(58), and (59) and assuming the kinematic conditions
fulfilled we get for the boundary conditions (55)

(r,r3)V%( A tan; +R tan6,)=(rir})""*tan(6,)T , (60a)
A R T

172 + =(rV2—, 60b

(ry) cosf;  cos6, (ry) cos0, (60b)

(refracted wave) .
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ko

. . ikgx .
and leaving aside the factor e ° ° we take as expression

of =, in (48)

eiko\/r_z(x sing; +z cos6; )

A
=,= iR

(incident wave)
iky1/7,(x sin@, +zcosf )
e oV/rylixsind, +z cos6, (reflected wave) (53)

Te ikgV/ 7} (x sind, +2z cosf,)

(refracted wave) .
A,R,T are, respectively, the amplitudes of the incident,
reflected, and refracted waves; 0;,0,,0, the angles of in-
cidence, reflection, and refraction, and r%/ 2 and r'zl/ 2 are
the indices of refraction on each side of the discontinuity
surface.

The kinematic conditions for reflection and refraction
at z =0 give the usual Descartes-Snell laws

V1, sin6,=1/r, sin,=1/r}, sin6, . (54)

The dynamic conditions are supplied by the boundary
conditions (26) that are written [since for the plane z=0
one has n;=(0,0,1 )]

P3=P37 Q2=Q12’ Q1=Q’1 . (55)

Assuming that the conditions (54) is fulfilled, and using
(48), (52), and (53) we get from (55)

B(ry)?sind,( A +R)=p'(ry)?sin(6,)T , (56a)
B(A+R)=BT, (56b)
(r3)"?[ cos(8;) A + cos(6,)R ]=(r5) "2 cos(6,)T .  (57)

Taking into account (54) the relations (56a) and (56b) sup-
ply the same condition. Then the relations (56) and (57)
supply R and T in terms of the incident amplitude 4.

For the extraordinary wave one may define k; and k;
according to (40b) by the relations

ki=kori?sinf, ky=kyri’? cosf , (58)

and similarly according to (53) we take as the expression
of in (50)

(59)

f

B(A+R)=B'T . (60c)

Taking into account the Descartes-Snell laws one sees at
once that the relations (60a) and (60b) supply the same
condition. Then, from (60b) and (60c) we get R and T in
terms of the incident amplitude A4.

Remark. A nonchiral crystal medium is obtained for
a=0, that ,is B=1.
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IV. CONCLUSIONS

From a formal point of view the 3D complex elec-
tromagnetism is rather simple, reducing in fact in the ab-
sence of charges and currents to the generalized wave
equation (23). But solving this last equation is rather
challenging and will probably require approximate
methods. The particular case of plane waves in a
crystal-like medium is not likely realistic and its main vir-
tue was to make calculations tractable. Nevertheless, as
simple as it is, this example shows the great diversity of
waves able to propagate in a medium that is anisotropic
and chiral. It also proves that a surface of discontinuity
may behave as an opaque screen for some kinds of waves.
These results suggest that it is worth thinking about
methods to solve consistently the electromagnetic equa-
tions of the 3D complex formalism.
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[1] A spinor analysis of electromagnetism in anisotrop-
ic chiral media has been performed as was made for iso-
tropic media. The spinor formalism is a bit more intri-
cate than the 3D complex formalism since in addition to
the spinor fields corresponding to the vector fields P and
0O, one needs the spinors corresponding to the complex
conjugate vectors P,Q (the spinors are not complex con-
jugate). But the spinor formalism leads to first-order par-
tial differential equations easily solved in terms of one
scalar field when the constitutive relations are real. Ap-
plying the spinor formalism to the simple problem dis-
cussed here provides of course the same results and in
this case the dispersion relations are obtained almost
trivially. So the question of the better formalism remains
open. The author may provide a copy of his works on
the spinor formalism to any interested reader.
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